If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+36x+48=0
a = 1; b = 36; c = +48;
Δ = b2-4ac
Δ = 362-4·1·48
Δ = 1104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1104}=\sqrt{16*69}=\sqrt{16}*\sqrt{69}=4\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{69}}{2*1}=\frac{-36-4\sqrt{69}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{69}}{2*1}=\frac{-36+4\sqrt{69}}{2} $
| -2=1+b | | 5=7-k | | -2y+17=15 | | 2(x+4-10=12 | | 90=-2+g | | |5y+15|=10 | | 3/7n=-21 | | -5−8p=-9p | | n^2−11n+30=2 | | -10n=-9n−7 | | 3(x-5)-2x=-6x+6 | | 2m-7=8m+5 | | -3/7n=21 | | 2m−7=8m+5 | | 2s^2+2s2=0 | | −8||+x=13 | | 9m-3(m+6)=2m(m+1) | | ||−8||+x=13 | | 4s−10=9s | | -7y=-4-8y | | 1/2n+3×n=14 | | x/5+2x/3=7/2 | | 2a=(27-3a)5 | | 5x+10+3x+3=45 | | 19x/46=38/23 | | 2×44+(-2y)+4y=88 | | -7(-2x+4)-7=-133 | | -7n-9=-93 | | -5+8y=7y | | 5x+10+3×+3=45 | | -9j=-10j+6 | | 17=2+7n+8 |